Signal-Line Circuit Protectors
SWITCHED +5V
P
100mV
+5V
A
MAX366
V+
8
MAX366
1
IN1
OUT1
7
100k
V IN
IN_
OUT_
V OUT
2
IN2
OUT2
6
3
IN3
OUT3
5
OP AMP
V-
4
V-
V+
8
V+
4
V-
-5V
ADJUSTABLE ANALOG VOLTAGE
PATH RESISTANCE = 100mV/A
Figure 5. Power-Supply Sequencing
Figure 6 shows a circuit that can give reliable results.
This circuit uses a 100mV voltage source and a low-
voltage-drop ammeter as the measuring circuit, and an
adjustable supply to sweep the analog voltage across
its whole range. The ammeter must have a voltage
drop of less than one millivolt (at any current) for accu-
rate results. (A Keithley Model 617 Electrometer has a
suitable ammeter circuit, appropriate ranges, and a
built-in voltage source designed for this type of mea-
surement.) Measurements are made by setting the
analog voltage, measuring the current, and calculating
the path resistance. The procedure is repeated at
each analog voltage and supply voltage.
It is important to use a voltage source of 100mV or less.
As shown in Figure 4, this voltage is added to the V IN
voltage to form the V OUT voltage. Using a higher volt-
age could cause the OUT pin to go into a fault condi-
tion prematurely.
Figure 6. Path-Resistance Measuring Circuit
High-Frequency Performance
In 50 ? systems, signal response is reasonably flat up
to several megahertz (see Typical Operating
Characteristics). Above 5MHz, the response has sev-
eral minor peaks, which are highly layout dependent.
Because the path resistance is dependent on the sup-
ply voltage and signal amplitude, the impedance is not
controlled. Adjacent channel attenuation up to 5MHz is
about 3dB above that of a bare IC socket, and is due
entirely to capacitive coupling.
Pulse response is reasonable, but because the imped-
ance changes rapidly, fast rise times may induce ringing
as the signal approaches the fault voltage. At very high
amplitudes (such as noise spikes), the capacitive cou-
pling across the signal pins will transfer considerable
energy, despite the fact that the DC path is a virtual open
circuit.
_______________________________________________________________________________________
9
相关PDF资料
MAX4080EVKIT+ KIT EVAL FOR MAX4080
MAX4208EVKIT+ KIT EVAL FOR MAX4208
MAX4209EVKIT+ KIT EVAL FOR MAX4209
MAX4210EEVKIT EVAL KIT FOR MAX4210
MAX4273EVKIT EVAL KIT FOR MAX4273
MAX4278EVKIT-SO KIT EVALUATION FOR MAX4178,4278
MAX44265EVKIT# KIT EVAL FOR 44265
MAX4754AEVKIT+ KIT EVAL FOR MAX4754
相关代理商/技术参数
MAX367CWN+ 功能描述:隔离器接口集成电路 Signal Line Circuit Protector RoHS:否 制造商:Texas Instruments 通道数量:2 传播延迟时间: 电源电压-最大:5.5 V 电源电压-最小:3 V 电源电流:3.6 mA 功率耗散: 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:SOIC-8 封装:Tube
MAX367CWN+T 功能描述:隔离器接口集成电路 Signal Line Circuit Protector RoHS:否 制造商:Texas Instruments 通道数量:2 传播延迟时间: 电源电压-最大:5.5 V 电源电压-最小:3 V 电源电流:3.6 mA 功率耗散: 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:SOIC-8 封装:Tube
MAX367CWN-T 功能描述:TVS二极管阵列 RoHS:否 制造商:Littelfuse 极性: 通道:4 Channels 击穿电压: 钳位电压:11.5 V 工作电压:2.5 V 峰值浪涌电流:20 A 安装风格:SMD/SMT 端接类型:SMD/SMT 系列: 最小工作温度:- 40 C 最大工作温度:+ 85 C
MAX367EPN 功能描述:热插拔功率分布 RoHS:否 制造商:Texas Instruments 产品:Controllers & Switches 电流限制: 电源电压-最大:7 V 电源电压-最小:- 0.3 V 工作温度范围: 功率耗散: 安装风格:SMD/SMT 封装 / 箱体:MSOP-8 封装:Tube
MAX367EPN+ 功能描述:热插拔功率分布 Signal Line Circuit Protector RoHS:否 制造商:Texas Instruments 产品:Controllers & Switches 电流限制: 电源电压-最大:7 V 电源电压-最小:- 0.3 V 工作温度范围: 功率耗散: 安装风格:SMD/SMT 封装 / 箱体:MSOP-8 封装:Tube
MAX367EWN 功能描述:热插拔功率分布 RoHS:否 制造商:Texas Instruments 产品:Controllers & Switches 电流限制: 电源电压-最大:7 V 电源电压-最小:- 0.3 V 工作温度范围: 功率耗散: 安装风格:SMD/SMT 封装 / 箱体:MSOP-8 封装:Tube
MAX367EWN+ 功能描述:热插拔功率分布 RoHS:否 制造商:Texas Instruments 产品:Controllers & Switches 电流限制: 电源电压-最大:7 V 电源电压-最小:- 0.3 V 工作温度范围: 功率耗散: 安装风格:SMD/SMT 封装 / 箱体:MSOP-8 封装:Tube
MAX367EWN+T 功能描述:热插拔功率分布 RoHS:否 制造商:Texas Instruments 产品:Controllers & Switches 电流限制: 电源电压-最大:7 V 电源电压-最小:- 0.3 V 工作温度范围: 功率耗散: 安装风格:SMD/SMT 封装 / 箱体:MSOP-8 封装:Tube